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HOMOGENIZATION OF NONLINEAR PARADBOLIC
BOUNDARY VALUE PROBLEMS IN PERFORATED DOMAINS

©1. V. SKRYPXNIK

This paper is devoted to the study of the convergence of solutions of boundary
value problems for quasilinear parabolic equations in a sequence of perforated
domains. :

Let € be any bounded domain in an n-dimentional Euclidean space 2" and
assumie that for every natural number s there are a finite number of nonintersecting
closed sets 1" i = 1,..., I(s) contained in §2. We shall formulate below two

types assumptions on !-‘f’},fr-:ml which follow that diameters of .-'": *tend 1o zero
as s — . By that we have not hypothesis about periodic structure of family

We shall consider problem:

du 2 du du e : =
- :_)—’—-i- ZlJ;j—(f‘,(‘r.f‘u,m)::u;;.(.r.!.u,mj_ e tein ] (1)
1=
u(r,t) = f(x.t), z€ 02 t€[0,7] (2)
u(r,0) =g(r), re o, {3)
where Q) = Q\ U'*"‘] F'M f(e ). gle) are given functions defined in Q x

[0, T]- 1.

By study these problems the following questions arise: to establish conditions
under which the solutions of the problems (1) - {3) converge as s — =~ and
determine the boundary value problem for limit function.

Lincar elliptic problems in a sequence of domains with finely granulated bound-
ary have been investigated by V..A. Marchenko and E. Ya. Khruslov (sec, ¢.q.
().

The study of this problem in nonlinear case essentially distingmishes from the
study of linear problem because by the construction of limit boundary value prob-
lem we must have some strong convergence of gradient of solutions of the problems
(1) - (3). The proof of such stroug convergence is based on special asvinptotic
expension by which solutions of nonlinear problems in perforated domans are ap-
proximated near sets 7 by solutions of model nonlinear problems. Mam role by
the study of asyvimptotic behaviour of solutions of nonlinear boundary value prob-
letns and by construction of himit boundary value problems have the new type
point - wise estimates of solutions of model problems. Corresponding results of
author for nonlinear elliptie case there are in papers {131, 10],

In parabohie case the choiee of functional space has principal role becanse by
considered conditions the sequence 2% can be unbounded in Lo0Q%7 x [0.17).
where u (. ) s solution of problem (1) - (3). And we propose the possibility
of the study of convergence of sequences u (e 1) in space with dernivatives of halfl
order with respeet to 1.

We assume that the functions aj(v.t.up)y=0.1,. ..n in the equation (11 are
defined forall r € R 1t e R u € h’].p € RR" and satisfyv the following conditions:

ay) the functions a;(x. t.u. p) are continnons in u, p for almost all (r. ) € B x
R'. measurable in ot for all (u.p) € R'xR": a;(x.1.0.0)=0for (r.t) € R"x R
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as) there are positive constants v,y such that for all values (o, 1) € R" x !,
u, v € RY, p g € " the inequalities

Sl (e p) = ay(e )y = 47) 2 vlp - al.
= (i)
laj(x, t,u,p)— aj(x,t,v. )| < pllp—ql +Ju—v]),j=1,...,n
lag(e, t, u. p)| € p(jul + p]) + w2, 1)
hold, where (e, 1) € L2(Qr), Qr =2 x [0,7).

We suppose for simplicity that g(x) = 0 where g(z) is the function from (3).
And we assume that the following condition holds:

) the function f(r, t) in (2) is defined for + € Q2. t € R is bounded in Q.
equal to zero for £ < 0 and belongs to space H-'._i '”"'(Q} where Q = 2 x R,

Let

N =sup ess{|f(x.1)|:(x.1) € Q} + ||f(1:.£)||w3,1;;w} (5)
0 o 112

Used notations for spaces Vo(Qp). Va(Qr), b I""(Q) W, (Q) and others
are understood so as in [9)].

[t is easy to prove that for every s the problem (1)-(3) has the solution u,(r. 1) €
€V (Q("} Qf,’.’) = Q) x [0, 7] if T is arbitrary positive number, g(x) = 0. con-
ditions ay), as). [) are fulfilled. Moreover, u,(x.t) belongs to space H"._,“’P“'{Qa'.']}
and there is a constant M independent of s such that for all s we have the estimates

sup ess{lus(a, )| : (. 1) € Q“‘} <M (6)
lus(2. Dlly, gy S M. in,(r.f}_ifu..;.uwf;],g M. (7)
SR
We can also prove that for arbitrary function ¢(x,t) € W, m)ﬂ WI ""'{Q"‘}}

and arbitrary function n(t) € CY(R') with support in imcrval (=1.7T) thv mtegral
identity

\/-_If -/n:s: a[F(um)(z, a)[Fu)(x. o)drda+

/ {n,‘(.t AT d"(” —Zaj{.f Loaz (;"_t )q(!]?_‘é%‘_{l_ (8)

et

— ap(r. 1. uy, }f,t{.")w{.r 1) }dedt = 0,
is valid and rg(t)u,(.r_.!) € H-.‘_,!‘”"’{Q(“]). Here F'(u,n). F1u are the Fourler trans-
forms of functions u,n, v with respect to t, the line over [Fy](x, a) denote compex
conjugation and we put u (r. ) =0 fort < 0.

The integral identity (8) has principal role by study of the convergence of se-
quence {u (e, 1)} and by construction of limit boundary value problem.

Denote by di—"] the minimum of the radius of the balls containing ") and let
21" be the center of a ball with radius di:') such that K ¢ B! d\*). Here
and in the sequel B(ry. p) denotes the ball with the radius p and center at . By
r;"’ we denote the distance of B(xz}". d;")) from the set J, ,, B(+}". ;") U o).

)
We suppose that the following conditions are I‘ulﬁold
) J'E e < ruf ) Jimyne 8 = 0, 708) = ma({r ,,,,, rgf}b}. where ¢ is a
constant independent of i, s;
i14) there 1s a positive constant ¢y such that the inequality
Iis)
A2An=-2)r.0s - :
P O L M e ()
i=1 :

holds.
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Theorem 1. Let n > 2 the conditions ay), ay). £). 31). 3) be fulfilled, g(x) = 0
and u,(x. 1) 1s a sequence of solutions of problem (1) - (3} converging weakly to

up(a. t) in ll';‘]fz(()-;-}, Then for every p € (1,2), hy € (0. 7) the following equality
|im {sllpf’ss,eln 7 / luy (o, t) = up(r. ) da+

i

Qq
[] |u,{.r,t + h) = ugle b+ h) —u(et)+ up(rt) ?

dug(x.t)  duple.t)
dr dr

' drdl + (10)

+supess dedt}) =0
:](}x(h“ 3 _\/ﬂ
(05
h“l‘if."i.

To construct a limit boundary value problem we need in additional assumption.
We denote Ay, = [In1/r'*]~1 5 = 1,2, ... and define the numerical sequence
|
l-')l i lities
p; by equalities

Ll s f'{s) ={i=1,..., I(s):d\" 2 [17)75 271},
" (11)
['1 =t {”] Fuelliis)=li=1 = I(s):d&”( [f'f‘”]r_u\:‘}

We can suppose that s is so great that the inequalities pf-"] < 11 ' for & €
f”( } IU!

. As < £ hold.
: lm‘ 8= l 2.... and i € I"(s) we divide the segment [0.77 on K (4, s) segments
of equal length by points t1%) = 0.4, . ’i*:ir; «, = T so that the inequalities

300’1 <
St =470, <81 hold.
We define for i € /"(s).s = 1.2.... and ¢ € &' a function rf".'[.r.-‘.q} as a
solution of the next boundary value problem
o T d S o) M
—w; Eaj(r,t‘(), 5) =0 for (2, )€ GV x [-T.T +1],
- e (12)
v(ed) = qu(|e — &, |).~{—T) for (z.4) € 8G" x [-T.1T+ 1],
v(z,=T) =0
where (-'i-‘ 3{.&*"“ 1)\ f'(”. w(r) s a fixed function of class C~(R') . equal to
one for r € 3. to zero for r 2 | and such that 0 € w(r) < 1.
We farmul.«uﬂ an additional condition

h) There exists a continuons function c(x.t, ¢) such that for an arbitrary ball
B C Qr the equality

; ol (.r l,q) ()a x,tq)
sl—l-";.. Z Z ff{s|aJ(J t 0 = ] t’).l"_J )1 d{

(i k)el @y j=1 1 (13)

f/ (r.t.q)dedt. (,)hF H(.t'f-”.'lpi”) X {‘1':‘;.-]_11’2‘.‘1:
B

I‘.l‘—‘ 1'

holds and the limit in (13) is uniform with respect to ¢ on every bounded interval.,
In (13) 1,(B) is the set of those pairs (¢, &) for which 7 € ["(s).k =1,...,K(i,s)

and [.r"' “’) € B.



Theorem 2. Let the conditions of theorem 1| and condition b be fulfilled. Then
the function ug(a. t) is a solution of the problem

{ e Sl ) it

j:i_ 2 f;!;”}“ t,ou. :—)%) =c(r,t, f—u)—aple, i u, :—T] (. t)EQr.
3 (14)
u(e ) = fle ), reoQ, teln.T].

w(r.0)=0, r€f.

Proofs of the Theorems 1,2 are based on special a priori estimates of solutions
which were proved by the author in [3].
Theorem 3. Let n > 2 the conditions ap), as) be fulfilled. There is a constant
Ky depending only on v, i, n, T such that for the solution of problem (12) the

mequality
o) R
[ et )] < Jglmin § Ry (—‘—’-—“—jl ol (15)
lr — i,

s valid for (x.1) € (.'E-“ x [=1,1].

[t is possible to formulate the inequality (15), in terms of capacities analogously
to the estimates in elliptic case [3.4].

Construction of the asymptotic expansion is connected with separation the lead-
ing terms which are constructed by solutions of local boundary value problems.

Corresponding to  subdivision of  segment  [0.7] by points fi-"i.l Frha=
0.1,....K(i.s) we define the infinitely differentiable functions g:;’(!).;‘;l:](t) for
e H' g e K(i,8),1=0,1,...,K(i,s),1€ ["(s) satisfying the
{Ull(llll(}nb. : 5

1) the supports of functions qE;’(! .71 () are contained correspondingly in
intervals (¢°)_, + A [l 0 o Tk ()2y, (87 -2, [p{*)2, t(’] + 22, [*12); the
values of these functions lwlong., to segment [0, 1]:

2) for t € [0.7] the identity

Kits) Kiis)
Y i+ 3 m@w=1 (16)
i=1 i=0

holds;
3) for all valuesof t € ', s = 1.2,....i € I"(s) the inequalities

dg,i (1)
dt

e e Ll
coa-1ppten-2 | \7)
seA, 1o di

L} i

<2

are valid.

Fors = 1,2,... and i € I'(s) we divide the segment {0, 7] on R(i. s) segments
of equal length by points !T',’ r=20,1,..., R(i,5) such that !‘1’,} =0, ii'}’m a=7T
and 1[d{”}"h’ i,8) € T < [d")2R(, 5).

We define for 1 € R] s=12..., i € I'(s),r = 0,1,..., R(i,s) the infinitely
differentiable functions q (t) sdllbfun;, the conditions:

1) the support of function §i.'(t) is contained in interval ( ~ [d2, £°) +
[1‘“]] ): the values of this function belong to segment [0, 1];

2} for { € [0.77] the identity

Hie x)

Soaglih =1 (17)

r=0



holds;
3) for all valuesof t € R!,s = 1,2,...,i € I'(s) the inequalities

dg?)
ir < d{ﬁ) -2
R 2]

are valid.
We define also the functions ¢{)(z),i = 1,...,1(s),¥{")(2),i € I"(s).s =
1,2, ... by equalities
ait)
T — ; z
A =228,y 5= u L)

where w(r) is the same funct.ton as in (12).
We denote by QS?,"Q{,’,], (") correspondingly cylinders
B2, 26(7) x [t0)_, 1030, B(a{"), 2 p{") x
x [t = 27017 + 20 (7)),
B(z(”, 2d{") x [i") — 2(d{)?,&3) + 2(d{")?).
And let for arbitrary cylinder (:2‘ and integrable function g(z,t)

ie il :
M0.Q1= — /]g(a:,t)drdi

be the mean value of g(z,t) with respect to Q’
We define

“’lk M[UOS Q(s} 1_181') M[TIU, Q: ! ] "{8) = M[u Q(S)]
£ = Mif, QN T = MIE QYN 79 = M5, 04

where ug(z,1) is weak limit of sequence u,(z,1), _f(:c, t) is a function from bound-
ary condition (2).
We define the asymptotic expansion by equality

5
ug(z,t) = uo(z, ) + oz, 1) + Y r (@, 1) + wile, 1) (18)
a=l
where
- K(i,s)
e E Z v‘(."‘]{:c,i, (!))g(s) (1) 3)(3]1
iel'(s) k=1
R(i,s)
Wz, ty= Y Y o=t D - 85 06 (),
iel'(s) r=0
K(i,s)
A= Y o @t 7Y ﬁf?)qiﬂ’(tw“’(n
ieft(s) I=0
R(i,s)
Oz, = 3 Y {E) - uolz, 0] + [f(z,0) - NG 0l (@),
igel'(s) r=0
K(i,s)
W= S 3 () - (e, 0] + [fe.t) - £ (@),
iel(s) k=1
K(i,s)
MO = 3 Y {EY - e )]+ [z, - TN 0w (@),

ieft(s) I=0

(19)
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and wy(z,t) is a remainder term of expansion and this function is defined by
equality (18) for £ € Q, t € (—o0,T) if we put vg")(:!:,t,q) =0forz e, t¢
[-T,T+1].

By study of behaviour of r,(z,t) and rgj](x, t) we use the pointwise estimate (15)

: : (s} ety 5 ; ;
and integral estimates for 2209 which it is possible prove using the estimate
B F) g

(15). In such way we can prove the next results.

Theorem 4. Let n > 2 the conditions a1), az), 1), B2), f) be fulfilled. Then the
sequences ri)
W, Q).

Theorem 5. Let n > 2 the conditions a, ), az), 51), 32), f) be fulfilled. Then the

sequence r,(z, 1) is bounded in spaces Vo(Qr), W;'%(Q) and for arbitrary p € (1,2)
the equality

(z,t), =1, 2, 3, 4, 5 converge strongly to zero in spaces V(Qr),

r
lim {sup ess,GRI/ Ir,(z,t)|2dx+f/ Br,(=.1) dzdi+
rs(z,t + h) — ry(x,t) P
+ sup ess, [/ dzdt} =0
h>0 a \/3 }

holds.

Using the theorems 4, 5 we can study the behaviour of the remainder term of
asymptotic expansion (18). The next theorem is valid.

Theorem 6. Let n > 2 the conditions ay),a3), 1), B2, f) be fulfilled,g(z) = 0,
us(z,t) is the solution of problem (1)-(3) and let the sequence u,(z,t) converge
weakly to ug(z,t) in W;‘#(QT). Then the equality

(21)

limy— o ||ws(z, t)n(!)“w,_%(m =0

holds for arbitrary function n(t) € C'(R!) with support in interval (=T, T).

For proof of last theorem we insert in integral identity (8) the function
wy(x, t)n(t) instead of test function ¥ (x,t).
From theorems 4, 6 we obtain that

lim,_. Ay — 1) = ry(z, =
iy ool (2,0) = wo(2,0) = 7 @ Ol

for 7" < T so we can consider r,(z,t) as a corrector with respect to convergence
T
in ng 2

Now we shall demonstrate the method of the derivation of the boundary value
problems for the limit function ug.

Let u&,l.])(;c, t) be a sequence of functions from C*°(Q) such that

ul@(z,0)=0 for t <0, |ull(z,t)]< M for (z,t)€Q,
. 22)
wO(z, 1) — uo(z, t)|| , —0, if m—oo. (
149(e, 1) ~ oo, Dl

Let h(z,t) be an arbitrary function of class C§°(Q) and for m = 1,2,... let us
introduce sequences

3

2
ham(z,t) = h(z,t) = Y_ o) (x,t) = Y~ pli)(z, 1), (23)
=1

J j=1
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where

()
A= X 2wt ) - ) P,
(l,k)EJ.“] ik Uikm
PA = Y o1, DA (1) (2),
(ik)eJZ)
R(i,s)
Pty = D Y AW (e, 1) = 1R + h(z, 1)} (1)l (x),
tel'(s) r=0
K(i,s)

A= S N et 1) - 1R + =z, )0 ()0 (2),
iel"(s) 1=0
K(i,s)

PO, t) = Y D [h(z.t) - KPP ()l (2)

i€l"(s) k=1
Here we keep all preceeding notations and

E;?n B u(o) (8)] (’) = M[h, Q(-'J

R = Min, Q) B = M, Q)
I ={(i,k):ie"@),k=1,...,K(@is), |f§ -« |> d(,)},

sm Uipm
IO = {(i,k):i€I"(s),k=1,...,K(i,s), |f" — o) | < di™).

Using the pointwise estimate (15) it is possible to prove next theorem.

(24)

Theorem 7. Let n > 2 the conditions ay, az, 81), B2) be fulfilled. There are exist
a positive constant K non depending on s, m and sequence v, tending to zero with

s — oo such that the inequalities

I,

(1) (1)
t t
+ supess.,>g// lpsm(z, +")T pem(@ D1 4y < < Kljhllcoq),

SﬂpBSSgeﬁl/ |4 (z, t)|2d:c+/f

(z, t+r ~ pn(z, t)
T

3"’&&”)‘(1’ of drdt+

(1), g
Opsm (2 )N 1t
dz

+ supess;sg drdt < 7:”"’11(‘“((21

1162 (2, )]| ‘%(Q +Z||p(”(fc a1l < Hsllblleo@)

o w!¥(q)

hold where p is arbitrary number from interval (1,2).

(25)

From (23), (24), properties of v( )(.r,t,q) J“)(f), tpE')(f) and other functions

it 1s followed that

hem(z,) € WY QD) nWh3(QW), s,m=1.2,.

(26)

So we can insert h,m(z,t) in integral identity (8) instead of test function y(r. ).

117



After such substitution and evaluation of arising terms we can prove that the
cquality

= o F(ug . ‘___TA I
V=1 /w '/n VF(uom))(z. a)[Fh](x,0)drda+

- / {uo(x. )h(x !}di[f_]_z aj(x.1, uo, dlt_)_)n( ]rJh(.r e
- Q'J' J,

1=1

—ag(a. by, ()Iﬂ n(Oh(a, t) fdedt+ (27)

Ix)K(is} (%) (s) (%) 3 )

dv; (.1, fix 1l,n}

+ Y ot 3 [ [ e 2RI Z b)),

L= lse=] slm FE R |

1) _[-‘] - {. [-‘]_ 1-‘]
x ot f ikm n(t)dedt = R(m.s)

o

holds where for R(m.s) the inequality
[R(m, s)| < 7V + 412 (28)

; s ! 2) T ol

is valid and ~{" 45 tend to zero if 5. m — oc. By proof of (27) we use also result
e rrence of 2420

of theorem 1 about strong convergence of —=5—=in L,(Q7).

Further we can prove that last summand of left-hand side of equality (27) tends
to

[/ el fle )= uDie ) h(x n(t)dedt (29)

if s — > on the basis of the condition h. And passing to limit in (27) if s — oc and
further if m — oc we receive that the function ug(x.t) is the solution of boundary
value problem (14).
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